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Causal Inference vs Machine Learning

• In Supervised Learning (regular ML classification), we try to 
predict given patient features X, the most probable value of 
outcome Y:
• Recall, we want to approximate E(Y|X)

• Causal Inference*, given patient X, if we give treatment T, 
predict what is the most probable outcome Y:
• Question: why not E(Y|X,T)? i.e. cast this in supervised learning 

language with X’=(X,T)?

* simplified setup for this class



Causal Inference

• First of all, what is E(Y|X,T)?
• In words, conditional probability distribution of Y given patient features X and 

treatment T

• Assumes a data distribution over tuple (X, T, Y), i.e. a dataset where we 
observe patients who receive treatments and have certain outcomes

• Example: Y is if person dies (1) or not (0), T is a choice between two 
cancer drugs (T=1 is drug 1, T=0 is drug 0) and X is patient age (X=1 if 
age>35 and X=0 if age <35). 

• We observe data from a hospital where patients above >35 receive 
treatment 1 and patients below <35 receive treatment 0



Example of Treatment Effects 
X Y T

0 0 0

0 0 0

1 0 1

1 1 1

1 0 1

• We want effect of drug 1 on patients below 35:

• -> Is this: E(Y|X=0,T=1) ?

• Nonsensical! We never even see (X=0,T=1) and 
we will never!

• What about treatment effect of the two drugs?

• -> Is this: E(Y|T=1) –E(Y=1|T=0) = 1/3

• Is drug 0 better? Or is it because drug 0 is given
to young patients?

• We need a new language to talk about causal 
inference more than conditional probability!



Problem Set 3: Problem 1

In this problem, we will present you with several free text scenarios. 
For each scenario, you must answer first whether or not causal 
inference is required in this scenario, and, if so, you must identify the 
relevant covariates (X), treatments (T), outcomes (Y ), and any hidden 
confounders (H) that pose particular concern in this setting.



Problem Set 3: Problem 1

Example:

You notice that ice cream sales are correlated with drowning rates.

You decide to test whether ice cream sales cause drowning rates to go 
up.

You have a large dataset: for each city, for each month, # ice cream 
ordered, # hot dogs eaten, average income in city, and # drownings.



Problem Set 3: Problem 1

Answer:

• Yes this requires causal inference, because we care about causation 
rather than prediction.

• T = # ice cream ordered

• Y = # drownings

• X = # hot dogs, average income

• What are possible hidden confounders?

• -> Temperature of month



Causal Inference: Do-Calculus 

• One formal way to write down the quantity we care about is:

• E(Y| X=0, do(T=1)) 

(This is equivalent in potential outcomes language to E[Y1|X=0] )

• The do(T=1) implies a direct intervention where we go and set T=1 for 
patients below 35 and see the results.

• Similarly: E(Y| do(T=1)) – E(Y|do(T=0))

-> How do we compute E(Y|X=0, do(T=1)) ? 



How to compute Treatment Effects?

• Ideally, we have a simulator of the world where we can go back in 
time, or simulate the future, to see the effect of the intervention.

• Sadly, we don’t have a simulator, we only have a dataset of 
observations (X,Y,T) that we need to leverage! 

• How can we (rigorously) compute treatment effects using only data?



Step 1: Drawing a DAG of the experiment

• Example 1: Y is if person dies (1) or not (0), T is a choice between two 
cancer drugs (T=1 is drug 1, T=0 is drug 0) and X is patient age (X=1 if 
age>35 and X=0 if age <35).  Cancer drugs are given randomly to 
patients*.

X Y

T

*Note that this is a Randomized Control Trial (RCT)



Step 2: Inferring relation between treatment 
and outcome (Problem 2)
In the last example, suppose we want to compute the average treatment 
effect:

E(Y| do(T=1)) – E(Y|do(T=0)

• From DAG we have: no factor influences both T and Y, thus if we look at our 
dataset (T, Y) it will be like we simulated for some people T=0 and others 
T=1 without changing anything else.

• Moreover, P(T=1) = 0.5, thus we observe both treatments

• Then our ATE is equivalent to:
E(Y|T=1) – E(Y|T=0)

Intuitively because there is no difference between people who receive drug 1 
or drug 0. Formally this is Rule 2 of the do-calculus (an axion).



Step 1: Drawing a DAG of the experiment

• Example 2: Y is if person dies (1) or not (0), T is a choice between two 
cancer drugs (T=1 is drug 1, T=0 is drug 0) and X is patient age (X=1 if 
age>35 and X=0 if age <35).  Let Z=1 if patient have arthritis. Drug 1 
given to X=1, and Drug 0 given to X=0

X Y

T

Z



Step 2: Covariate Adjustment (Problem 3)

In the last example, suppose we want to compute the average 
treatment effect:

E(Y| do(T=1)) – E(Y|do(T=0)

• Can we do:

E(Y|T=1) – E(Y|T=0)

• No! there exists variable, namely X, that effects both T and Y! 

• Solution: Covariate Adjustment!



Step 2: Covariate Adjustment

• Backdoor criterion: Find the set of variables S, such that no variable 
in S is a descendant of T, and S blocks every path between T and Y 
that contains an arrow into T. 

• For example, all the parents of T satisfy the backdoor criterion. 

X Y

T

Z
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Step 2: Covariate Adjustment

• Backdoor criterion: Find the set of variables S, such that no variable 
in S is a descendant of T, and S blocks every path between T and Y 
that contains an arrow into T. 

• For example, all the parents of T satisfy the backdoor criterion, or 
common ancestors of T and Y 

X Y

TZ



Step 2: Covariate Adjustment

• Now if we want to compute:

• E[Y|X,Z,do(T=1)] this is the same as E[Y|X,Z,T=1]

• Why? Because given (X,Z), now the assignment of T is random! There 
is no other factor that affects the pair (T,Y) when we condition on (X,Z) 

X Y

TZ



Step 2: Covariate Adjustment

Rule:

𝐸 𝑌 𝑑𝑜 𝑇 = 1 = 

𝑠

𝐸 𝑌 𝑇 = 1, 𝑆 = 𝑠 𝑃(𝑆 = 𝑠)

We also need: 0<P(T=1|S=s)<1 for all s (common support)



Step 2: Covariate Adjustment (Problem 3)

we want to compute ATE:

E(Y| do(T=1)) – E(Y|do(T=0)

• Condition on X,Z per last slide:

E[Y|do(T=1)] = E_{X,Z}[ E[Y|T=1,X,Z]] (iterated expectation)



C
h

o
le

st
er

o
l

Stationary Biking

Intuition behind Covariate Adjustment



C
h

o
le

st
er

o
l

Stationary Biking

Intuition behind Covariate Adjustment



C
h

o
le

st
er

o
l

Stationary Biking

Age

20

25

30

35

40

Intuition behind Covariate Adjustment



C
h

o
le

st
er

o
l

Stationary Biking

Age

20

25

30

35

40

Intuition behind Covariate Adjustment



Other Methods

• Covariate Adjustment is just one method, there are many more we 
very briefly covered in class:
• Matching

• Instrumental Variables

• Propensity Scores

• Regression Discontinuity Design

• Synthetic Control



Avg Cholesterol = 200 Avg Cholesterol = 206
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Matching

Identify pairs of treated and untreated 
individuals who are very similar or even identical 
to each other

Very similar ::=  𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑋𝑖 , 𝑋𝑗 < 𝜖

Paired individuals provide the counterfactual 
estimate for each other.

Average the difference in outcomes within pairs 
to calculate the average-treatment-effect on the 
treated

:i j



Instrumental Variables

• A variable correlated with treatment, but independent of outcome.


	Slide 1: Recitation 6
	Slide 2: Causal Inference vs Machine Learning
	Slide 3: Causal Inference
	Slide 4: Example of Treatment Effects 
	Slide 5: Problem Set 3: Problem 1
	Slide 6: Problem Set 3: Problem 1
	Slide 7: Problem Set 3: Problem 1
	Slide 8: Causal Inference: Do-Calculus 
	Slide 9: How to compute Treatment Effects?
	Slide 10: Step 1: Drawing a DAG of the experiment 
	Slide 11: Step 2: Inferring relation between treatment and outcome (Problem 2)
	Slide 12: Step 1: Drawing a DAG of the experiment 
	Slide 13: Step 2: Covariate Adjustment (Problem 3)
	Slide 14: Step 2: Covariate Adjustment
	Slide 15: Step 2: Covariate Adjustment
	Slide 16: Step 2: Covariate Adjustment
	Slide 17: Step 2: Covariate Adjustment
	Slide 18: Step 2: Covariate Adjustment
	Slide 19: Step 2: Covariate Adjustment (Problem 3)
	Slide 20: Intuition behind Covariate Adjustment
	Slide 21: Intuition behind Covariate Adjustment
	Slide 22: Intuition behind Covariate Adjustment
	Slide 23: Intuition behind Covariate Adjustment
	Slide 24: Other Methods
	Slide 25
	Slide 26
	Slide 27: Matching
	Slide 28: Instrumental Variables

